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ABSTRACT!

A new compressible Navier-Stokes code in cylindrical coordinates was
developed for investigating axisymmetric wakes of bluff-based bodies in su-
personic flows. In this code, high-order compact finite differences derived
for non-equidistant grids are employed and a new state-of-the-art axis treat-
ment is incorporated. Additionally, the fully three-dimensional transport
equations for turbulent kinetic energy and turbulent dissipation are imple-
mented to enable (steady or unsteady) Reynolds Averaged Navier Stokes
(RANS) simulations. Furthermore, a new "Flow Simulation Methodology”
(FSM) was developed for computing complex compressible flows. The cen-
terpiece of F'SM is a strategy to provide the proper amount of modeling of
the subgrid scales. This is accomplished by a ”contribution function” which
locally and instantaneously compares the smallest relevant scales to the lo-
cal grid size. The contribution function is designed such that it provides no
modeling if the computation is locally well resolved so that the computation
approaches a Direct Numerical Simulation (DNS) in the fine grid limit, or
provides modeling of all scales in the coarse grid limit and thus approaches
an unsteady RANS (URANS) calculation. In between these resolution limits,
the contribution function adjusts the necessary modeling for the unresolved
scales while the larger (resolved) scales are computed as in traditional Large
Eddy Simulations (LES). Preliminary results have shown that the new high-
order code has great advantages for supersonic base flow simulations and
that calculations, in particular together with FSM, will allow simulations of
supersonic baseflows at much higher Reynolds numbers than possible with

conventional LES.

1Upon recommendation from ARO, the scope of work was shifted from passive and
active control of supersonic axisymmetric base flows towards development of a compact
Navier-Stokes code in combination with a new Flow Simulation Methodology.




1. INTRODUCTION

For axisymmetric aerodynamic bodies in supersonic flight, the flow field
in the wake region has considerable effect on the aerodynamic drag. Even
small changes in the flow behavior of the wake may affect the performance
of the entire flight vehicle, e.g., missiles, rockets, or projectiles. The efféct
of the wake on the aerodynamic drag is mainly due to the recirculation
region that develops in the base region of the body and thus to the low
pressure associated with the recirculating flow (base drag). Flight tests with
projectiles (U.S. Army 549 projectile) have shown that the base drag may
account for up to 35% of the total drag (see Rollstin, 1987). This suggests
that attempts to modify the near wake flow such that the base pressure would
increase could be highly rewarding with respect to drag reduction and, as a
consequence, with regard to increasing the performance characteristics of
flight vehicles or projectiles. However, in order to modify the near-wake flow
effectively, a detailed understanding of the underlying physical mechanisms
that are responsible for the flow behavior is required.

For this reason, in the past, numerous research efforts, experimental,
theoretical, and computational, have focused on understanding the physics
of the base flow or the near-wake region. However, due to the difficulty of

the problem and limitations of experimental and numerical techniques, these




studies focused almost exclusively on the mean flow behavior and not on
the potential effects of the unsteady structures of the turbulent flow. As
discussed below, if energetic (coherent) structures are indeed present in such
flows, and more recent evidence indicates that they are [see Smith & Dutton
(1996), Bourdon & Dutton (1998), Harris & Fasel (1996), and Tourbier &
Fasel (1994)], the dynamical behavior of such structures may have a profouhd
effect on the resulting mean flows. Also, as a consequence of this, profound
modifications of the base flow behavior and thus the base drag must involve
a modification of the dynamics of these large structures.

In recent years, techniques for reducing the base drag have been suggested
and investigated, such as boattailing, base bleed, base burning, etc. [see, for
example, Sahu et al. (1985), Nietubicz & Gibeling (1993), Sahu & Heavey
(1995), Sahu & Nietubicz (1994), Mathur & Dutton (1996a,b) and Bourdon
& Dutton (2000a)]. Such techniques can indeed modify the mean base flow
and, as a consequence, the base drag. However, the underlying mechanisms
responsible for the changes are not understood. In order to optimize such
techniques for practical applications, it is essential that the fundamental
mechanisms that are responsible for these changes are brought to light. As
discussed below, the key to uncovering these essential mechanisms is in first
understanding the role of the (coherent) turbulent flow structures and, in

particular, how the dynamics of these structures is influenced by proposed
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techniques for drag reduction.

1.1 Experimental Research

Historically, the fundamentals of the near-wake behavior were first inves-
tigated using experiments almost exclusively. However, wind tunnel experi-
ments suffered from the difficulty of properly supporting the (axisymmetric)
base model so as not to cause undue effects on the flow field behind the
base Chapman (1951). In experimental investigations, different methods of
model support have been proposed; for example, rear sting support Donald-
son (1955), side mounted struts Chapman (1951), and up stream wire mounts
Dayman (1963). However, all of these techniques have shown non negligible
effects on the near wake behavior and, in particular, on the base pressure.
The forward sting support used by Herrin & Dutton (1991) and also in sub-
sequent and current experimental investigations appears to be superior to
other methods with regard to minimizing flow interference [also see Dutton
& Addy (1993), Herrin & Dutton (1995), Herrin & Dutton (1994), Mathur
& Dutton (1996a), Mathur & Dutton (1996b) and Bourdon & Dutton (1998,
2000a)].

In addition to the interference caused by model support, wind tunnel
interference can have a considerable influence on the base flow behavior.

Therefore, extra care has to be taken in order to understand and minimize the

11
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effects of vibrations, upstream sound, noise radiated from turbulent boundary
layers of the wind tunnel walls, blockage, etc. This is particularly important
for investigating the role of large coherent structures and for reliably testing
passive control techniques (see section 2.2). For the wake flow with a central
jet (power on mode), wind tunnel interference would be somewhat less of
a problem and therefore appears to be experimentally easier. However, for
this case, the shear layers become much thinner, making it much harder to
resolve the resulting large gradients when taking measurements.

Furthermore, the quality of experimentally obtained flow data in the wake
is often compromised whenever intrusive probes (such as Pitot pressure tubes,
hot wire probes, etc.) are used. This is particularly true for measurements
within the recirculating region immediately downstream of the blunt base
of the body. The strong sensitivity to intrusive probes is due to the ab-
solute/global instability that may be present in supersonic wake flows (see
section 2.2). Absolute stability behavior is very sensitive to small changes of
the mean flow velocity profiles, in particular when solid surfaces (probes) are
inserted, which can change the upstream pressure feedback mechanism.

In free-flight experiments, many of the above mentioned difficulties do not
arise. However, in addition to the much greater cost, free flight experiments
also suffer from major disadvantages. For example, it is not possible to map

out details of the flow field as is possible with wind tunnel experiments.
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Also, the reliability of flight test data is often in question because of the
considerable difficulties in controlling conditions and parameters in the free
flight tests.

In recent years, many experimental efforts have focused on modifying the
base flow in order to reduce the base drag. So far, only so-called passive con-
trol methods have been considered, such as boattailing, base bleed, and base
burning [see, for example, Cortwright & Schroeder (1951), Reid & Hastings
(1959), Bowman & Clayden (1968), Clayden & Bowman (1968), Valentine
& Przirembel (1970), Hubbartt et al. (1981), Ding et al. (1992), Mathur &
Dutton (1996a,b)]. These experiments have shown that there are potentially
considerable rewards for passive flow control. However, it is still not under-
stood why certain measures are more effective than others (or why others do
not work at all) and what the optimal parameters should be. The reason for
this is that the fundamental physical mechanisms in a supersonic wake flow

are not yet understood.

1.2 Numerical Simulations

Because of the difficulties and uncertainties associated with experiments,
researchers have looked to numerical simulations as attractive alternatives
and/or complements to experimental investigations. Sparked by the rapid

increase in the computing power of supercomputers in the last two decades,
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numerous attempts were made to calculate the flow field around and be-
hind axisymmetric bodies aligned with the free stream. In numerical simu-
lations, problems associated with wind tunnel interference, model support,
probe intrusion, etc., are not present. In addition to possibly providing
further understanding of the relevant physics involved, these calculations
were motivated by the considerable challenge that this complicated flow field
provides for computational fluid dynamicists. The computational challenge
arises mainly from the combination of shock waves, thin free shear layers,
boundary layers, and recirculating regions; associated with this are highly
disparate length scales and local regions of very high gradients. Reliable and
realistic computations can therefore only be performed if the high gradients
can be adequately resolved.

Furthermore, the wake flow is turbulent (or at least transitional), requir-
ing adequate turbulence models. In practically all earlier and in most of the
more recent numerical attempts, only the steady flow field has been calcu-
lated. In these computations, ”Reynolds Averaged Navier Stokes” (RANS)
formulations were used in combination with a turbulence model, such as
the algebraic eddy viscosity model of Baldwin and Lomax, the two equation
K — ¢ model, or the K — w model. In the literature, numerous attempts
have been reported on calculating turbulent wake flows using either the com-

plete Navier Stokes equations or the thin layer (parabolized) Navier Stokes
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equations, or combinations thereof [for example, the parabolized equations
in part of the flow field (typically up to the trailing edge of the body) and the
full equations in another part (typically in the wake region)]. Also, variable
(adaptive) grids were used in the computations in order to resolve the local
large gradients of the flow field.

Relatively few direct comparisons of numerical simulations with labora-
tory experiments were attempted in the past. The more successful numerical
calculations were able to capture the qualitative features of the experimen-
tally obtained flow field. However, relevant quantities, such as turbulent
shear stresses and, in particular, such fundamental aspects as the all impor-
tant base pressure or the size of the separation bubble (recirculation region),
were often not predicted well [see Petrie & Walker (1985)]. Also, and partic-
ularly disturbing, using different turbulence models but otherwise identical
codes yielded inconsistent (and often contradictory) results. This is an indi-
cation that something fundamental might be amiss.

Childs & Caruso (1987) surveyed existing computational Navier Stokes
methods for calculating turbulent compressible wake flows. They suggested
that inadequate numerical resolution of the large gradients and, in particu-
lar, the turbulence modeling may be the major culprits for not being able
to reliably and accurately calculate the flow field. It appears that because

of the strong effect of different turbulence models on the results, even the
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qualitative agreement between various computations and experiments may
often have been entirely fortuitous. Similar observations were made by Sahu
& Nietubicz (1994), who investigated the influence of different turbulence
models for RANS calculations of supersonic axisymmetric base flows. They
showed that, while some flow quantities can be modeled adequately by ad-
justing certain parameters in the turbulence model, other quantities do not
agree well with experimental results.

Although considerable progress has been made in past years in using
RANS calculations for supersonic axisymmetric wake flows behind missile
type bodies, there is still no true reconciliation between experimental and
computational results [see Delery & Wagner (1990)]. In addition to possible
shortcomings of the numerical codes, the discrepancies were due in part to a
lack of reliable experimental data, in particular due to a lack of experimental
data in sufficient detail to allow scrutinizing comparisons between experi-
ments and calculations. Now, due to the extensive experimental effort at the
University of Illinois by Dutton and co-workers, sufficient and reliable exper-
imental data are being made available for close comparison with numerical
computations.

In spite of the discussed shortcomings of the Reynolds-averaged calcula-
tions, recent applications have attacked increasingly more difficult situations.

As modification of wake flows is now being considered as a means of drag
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reduction, RANS calculations have been performed to investigate, for exam-
ple, the effects of base bleed [see, for example, Sahu et al. (1985), Sahu &
Heavey (1995) and Danberg & Nietubicz (1992)] and base burning Nietubicz
& Gibeling (1993). The simulations show a correct trend for the drag reduc-
tion when compared with experimental results. However, in some cases, even
global flow field characteristics such as the centerline velocity are not in go'od
agreement with experiments. This is an indication that certain mechanisms
are difficult to model in RANS calculations. From the experimental effort
of Dutton and co-workers, it is becoming increasingly more obvious that at-
tempts to only calculate the steady flow might miss the essential physical
mechanisms that are responsible for the base flow behavior. Dutton and
co-workers have identified a significant time-dependent behavior and found
large coherent structures that may play crucial roles in the base drag. These
findings may be particularly important when modifications of the flow are
attempted (for example, using boattailing, base bleed, etc.). Therefore, in
order for numerical simulations to be useful for uncovering mechanisms rel-
evant to the base drag in supersonic flows, they have to be able to capture
the unsteady behavior resulting from the dynamics of the large (coherent)
turbulent flow structures (see discussion section 2.2).

Another approach of turbulence modelling are Large Eddy Simulations

(LES). For LES, only the large scale motion is computed directly. The sub-
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grid scale structures which are assumed to be isotropic are modelled. This
method was initially proposed by Smagorinsky (1963) who based his model
on the Boussinesq assumption (Boussinesq (1877)) which states that the
turbulent stresses can be related linearly to the mean velocity gradients by
an eddy viscosity.

For the flow under consideration, LES would be the method of choice be-
cause of the ability to capture three-dimensional and unsteady effects. The
shortcomings of the standard Smagorinsky LES model which include the
failure to account for normal stresses (which are present in the recirculation
region for example), an ad-hoc constant that is only valid for a certain flow
region and ”"damping functions that are needed at the walls which are em-
pirical in nature and do not apply to general wall bounded turbulent flows”
(Speziale (1997)) make this model ill-suited for this research. Further short-
comings of this widely used model can also be found in Jiménez & Moser
(1998).

In the last few years, a new class of hybrid RANS/LES turbulence mod-
els has emerged that tries to unify the best of both worlds. The underlying
principle is to conduct a RANS type simulation close to a wall and perform
an LES away from the wall to capture the unsteadiness. One way of imple-
menting this method has been proposed by Spalart et al. (1997) and is known

as Detached Eddy Simulation (DES). In principle, the method compares the
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distance to the closest wall with the product of the local grid spacing and an
empirical constant. For small distances, the eddy viscosity is computed ac-
cording to a one-equation RANS model, otherwise a Smagorinsky type LES
is computed.

This model has been applied to the experimental case of Dutton and
co-workers by Forsythe & Hoffmann (2000) who mainly explored different
choices for the empirical constant. The mean flow quantities in the recircu-
lation region were found to deviate significantly from the experiments, even
though they reported very good agreement of the mean base pressure distri-
bution. Later work by Forsythe et al. (2002) incorporated the compressible
shear layer corrections into the RANS-part of the simulation and it was shown
that this modification had a negligible impact on the solution.

Another methodology is based on using the same turbulence model in
both limits and smoothly blend from an LES to a RANS. This is achieved by
a céntribution function which locally determines how much of the turbulence
is resolved by the computational grid. This new Flow Simulation Methodol-
ogy (FSM) was proposed by Speziale and Fasel (see Speziale (1998), Sandberg
(1999), Zhang et al. (2000) and recently extended to compressible flows by
Terzi & Fasel (2002)). The turbulence model is a state-of-the-art explicit al-
gebraic Reynolds stress model (ASM) developed by Gatski & Speziale (1993),

which is derived from the full Reynolds transport equations. It features an
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anisotropic eddy viscosity with strain dependent coefficients and accounts for
normal stresses and rotational effects.

The contribution function is determined by comparing the local grid size
with a local estimate of an appropriate turbulent length scale, usually chosen
to be the Kolmogorov length scale (Lx). For very coarse grids (compared
to Lg), the Reynolds stress from the turbulence model is scaled with unity
and a RANS simulation is conducted (Note that the ASM is capable of
capturing unsteadiness, therefore an unsteady RANS (URANS) simulation
is performed). In the limit of fine resolution, the Reynolds stress is multiplied
with zero, recovering a DNS. Between these two limits, a ”non-traditional”
LES based on the nonlinear ASM is performed. This new methodology seems
to be very promising for the flow under investigation as it will enable to
capture the relevant large structures and should therefore be able to predict
the mean flow quantities in the near-wake region.

Towards this end, we initiated several years ago (with funding from ARO)
a computational program that exactly addresses these issues [see Tourbier
& Fasel (1994), Tourbier (1996), and Harris & Fasel (1996)]. We believe
that high-quality Direct Numerical Simulations (DNS), Large-Eddy Simu-
lations (LES), unsteady RANS simulations (URANS) and especially FSM
are required to uncover the essential physics and, equally important, due to

the complexity and difficulties in experiments and simulations as discussed
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above, that these simulations are carried out simultaneously and in close

collaboration with experiments.




2. TECHNICAL BACKGROUND

2.1 Mean Flow Field Behind a Cylindrical Body with a Blunt
Base

The mean flow field for the near wake region downstream of an axisym-
metric body with a blunt base is shown schematically in figure 2.1. This flow
topology is based on the experiments by Dutton and co-workers Herrin &
Dutton (1994). This mean flow field, shown in figure 2.1, disguises the fact
that the flow is turbulent and highly unsteady. However, even the mean-
flow topology is already very complex: Downstream of the expansion waves
emanating from the sharp corner, a thin, yet very energetic shear layer de-
velops that encloses a massively separated (recirculation) region with a rear
stagnation point. The shear layer divides the flow field into a high-speed
supersonic outer region and a low-speed region near the base. Downstream
of the rear stagnation point, recompression occurs and the flow field from
there on looks increasingly like that of a subsonic wake at several diameters
from the base. The behavior in the separated (recirculation) region has a
considerable influence on the base drag, yet this region is strongly dependent
on the topology of the shear layer and the ensuing recompression region. The
sharp radial gradients in the shear layer and the rapid spatial changes make

the flow field highly complex, and it is therefore very difficult to investigate
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both experimentally and computationally, even if the flow field were steady.

However, as mentioned, the mean flow topology of Figure 2.1 is misleading -

2

—_—
1 —_—

Figure 2.1 Schematic of flow field behind a cylindrical body with a blunt
base (mean flow).

and disguises the fact that, in reality, the flow is highly unsteady, caused by
the very energetic shear layers, the flow recirculation, and rapid downstream
adjustment in the recompression region.

Dutton and co-workers have started to document the unsteady nature
of this flow and have found that, even in the dead-air region, significant
dynamical behavior of the flow can be observed with velocities up to 100
m/s (Herrin & Dutton (1994)). The strong dynamical behavior in the (mean)
recirculating region was also studied in detail using our computational tools
[Tourbier & Fasel (1994), Harris & Fasel (1996); see also section 6]. The
question is, of course, how relevant the unsteady nature of the flow is to the

performance of projectiles and missiles.
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2.2 Large-Scale Coherent Structures

It is well known that for subsonic (incompressible) wakes, the dynamics
of the large (coherent) structures play a dominant role in the local and global
behavior of the flow. This evidence was found from both experimental inves-
tigations and numerical simulations (including ours) and was confirmed by
theoretical studies. For incompressible bluff body wakes, it has been well es-
tablished that the existence of absolute and global instabilities is responsible
for the development of the large structures (Huerre & Monkewitz (1990)).
Using numerical simulations, absolute/global instabilities were found for a
two-dimensional bluff body with a blunt base by Hannemann & Oertel (1989)
and for an axisymmetric body with a blunt base by Schwarz et al. (1994).
The absolutely/globally unstable modes for the axisymmetric base flow are
of a helical nature. |

For supersonic speeds, on the other hand, relatively little is known about
the dynamical behavior of the large structures in turbulent flows or, in par-
ticular, if absolute/global instabilities exist. This is true for supersonic flows
in general and for axisymmetric wakes in particular. The explanation for
this void is that experiments are difficult to conduct for supersonic speeds
(see discussion in introduction). In addition, expensive facilities and intri-

cate diagnostic equipment are required for supersonic hydrodynamic stability
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experiments.

Due to the lack of guidance from experimental investigations prior to
our computational research initiative on the subject, no successful computa-
tional/theoretical attempts have been made to study the unsteady, dynami-
cal behavior of transitional or turbulent supersonic axisymmetric base flows.
We feel that, as for subsonic wakes, it is exactly the dynamical behavior of
the large scale structures that strongly influences the flow field in supersonic
axisymmetric wakes. We conjecture that the discrepancies between experi-
ments and steady Reynolds averaged Navier Stokes calculations may be due
to the fact that this unsteady, dynamic behavior of the large scale structures
is not properly éccounted for in current turbulence models. The fact that
the results of Reynolds averaged calculations depend strongly on the turbu-
lence models used [see Petrie & Walker (1985) and Sahu (1992)] supports
this conjecture.

As in the subsonic case, supersonic wake flows behind a blunt base are
dominated by a separated region, and associated with it is (in the mean) an
axisymmetric shear layer originating from the sharp corner of the base. Tur-
bulent, subsonic (incompressible) shear layers are characteristic of developing
large coherent structures that are of a highly unsteady nature. (For two di-
mensional shear layers, these large structures are strongly two-dimensionally

organized.) Thus, it is not surprising that large coherent structures, which
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can be observed to originate in the shear layers directly behind the blunt base,
are present also for subsonic turbulent wakes behind blunt trailing edges.

There is considerable evidence that the cause of the large structures is
due to the hydrodynamic instability of the (time-averaged) mean flow and
that the development of these structures can be captured by stability the-
ory. In fact, certain aspects of the development can be captured even with
linear stability theory although intensities (amplitudes) of the structures are
often too large for the linear stability theory to be valid. Experimental re-
sults for incompressible turbulent mixing layers, two-dimensional turbulent
wakes, and axisymmetric wakes with a blunt base and comparison with lin-
ear stability theory have shown that certain key features, such as dominant
frequencies, mode shapes (amplitude distributions), and streamwise spacing
(streamwise wave lengths) of the structures can be well predicted by linear
stability theory (Wygnanski et al. (1986), Marasli et al. (1989)). These in-
vestigations support the notion that hydrodynamic instabilities give rise to
the generation and development of large structures.

The dynamical behavior of these structures is responsible for the strong
unsteady flow behavior in the wake. Thus, in reality, there is no steady tur-
bulent wake flow (and, in particular, there is no dead wake region near the
base of a bluff body), even when the small scale (high frequency) fluctua-

tions are not taken into consideration. Rather, the flow is highly unsteady,
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dominated by large amplitude and, relative to the small scales, low frequency
fluctuations. The steady mean flow measured in experiments is in fact the
time average of the time dependent fluctuating flow field. Since the ampli-
tude of these large scale fluctuations can be relatively large, the total flow
field cannot actually be composed by linear superposition of the various fluc-
tuating components onto the (steady) mean flow field. Rather, because of
nonlinear interaction between the various fluctuation components, the actual
mean flow may be strongly dependent on the composition of the fluctuating
parts of the flow field.

This evidence was confirmed experimentally for incompressible wake flows
Wygnanski et al. (1986), Marasli et al. (1989) by artificially forcing the flow.
With artificial forcing, existing modes (structures) could be modified or new
modes (structures) created. As a consequence, the mean flow could be mod-
ified substantially. This study showed convincingly that there is no unique
turbulent mean flow for the wake and not even for the far wake. Rather, the
mean (steady) wake flow is strongly dependent on the nature of the large-
scale coherent structures and, as a consequence, on their dynamical behavior.

With this in mind, it is not surprising that mean flow fields depend
strongly on experimental conditions and can even vary for the same facil-
ity with minor changes of the experimental parameters. Also, for this rea-

son, it is not surprising that current turbulence models for calculating mean
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flows using the Reynolds averaged Navier Stokes formulations are perform-
ing poorly for flows that are known to be dominated by the dynamics of
large structures, that is, for flows with massive separations and free shear
layers. Chances to arrive at better turbulence models are rather slim un-
less the physical and dynamical behavior of the large structures are better
understood and until this knowledge can be implemented in the turbulence
modeling.

Thus, in the context of the proposed research, the question arises: Do
large structures play a similarly important role for supersonic separated flows
and in particular for supersonic axisymmetric wakes? Unfortunately, there
are relatively few experimental investigations that have focused on this issue.
However, when looking at flow visualization pictures of supersonic wake flows,
very distinct patterns with large scale structures can be observed.

For planar supersonic shear layers, the experimental investigations of Pa-
pamoschou & Roshko (1988) have convincingly demonstrated the presence of
dominant large scale structures for a variety of conditions, e.g., Mach num-
bers and density ratios. In fact, relative to the shear layer thickness, these
structures are often considerably larger (and therefore appear to be more
dominant) than those for incompressible shear layers. Large scale (coher-
ent) structures for supersonic shear layers were also observed by Ortwerth &

Shine (1977) and for supersonic jets by Oertel (1979). For the supersonic ax-
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isymmetric shear layer behind a backward-facing step investigated by Roshko
& Thomke (1966), flow visualization suggests a mean flow that is predomi-
nantly periodic in the azimuthal direction, indicating possibly the presence
of large (coherent) structures with a dominant azimuthal wave length [see
Figure 6 in Roshko & Thomke (1966)]. |

The fact that wind tunnel interference and interference from model sﬁp—
port are strongly affecting the mean flow behavior for supersonic axisymmet-
ric wake flow experiments may be an indication that this might be caused
by the presence of large coherent structures. The dynamical behavior of the
large structures may be changed by the interference disturbances, or addi-
tional large structures may be generated due to changes in the hydrodynamic
stability behavior of the mean flow, as discussed above.

Some quantitative evidence of the existence of dominant large structures
in supersonic axisymmetric wake flows was provided by the experiments of
Demetriades (1968), who investigated the unsteady nature of the flow field.
The amplitude spectra (see Figures 11 to 14 in Demetriades) display distinct
peaks at certain (relatively low) frequencies, thus indicating the presence of
dominant modes (structures). This is supported by plots of rms-amplitude
distributions (with respect to radial distance from the centerline) for the axial
velocity fluctuation and the density fluctuation (Figures 2 and 3, respectively,

of Demetriades). The amplitude distribution for the velocity fluctuation is
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highly reminiscent of that of an incompressible axisymmetric wake, where
it is known that this profile is due to the presence of dominant, large co-
herent structures (Cannon & Champagne (1991)). In fact, Morkovin (1968)
suggested long ago that when normalized properly, the distribution of fluctu-
ations (as caused by large structures) has a universal character, even in very
diverse flow regimes, e.g., even when comparing subsonic and supersohic
flows.

In a well-planned and carefully executed experimental program at the
University of Illinois, Dutton and co-workers [see, e.g., Smith & Dutton
(1996)] identified coherent structures for a supersonic two-dimensional wake
behind a blunt base. The observed dominant structures appear to be sig-
nificant relative to the shear layer thicknesses. These observations were in
qualitative agreement with those of Papamoschou & Roshko (1988) for a
planar supersonic shear layer. From our previous numerical investigations
of transitional and turbulent base flows (two-dimensional and axisymmetric;
albeit at lower Reynolds numbers than the experiments, see section 5), we
found highly energetic structures with amplitudes of about 15% of the free
stream velocity that may have a significant effect on the global flow behavior
(see earlier discussion).

More recently, employing sophisticated flow visualization techniques, Dut-

ton and co-workers (Bourdon & Dutton (1998, 20005)) were able to clearly
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show the presence of large turbulence structures in the axisymmetric base
flow. Therefore, from our previous simulations and the recent experiments
by Dutton and co-workers, we have sufficient evidence that large coherent
structures are present in supersonic axisymmetric base flows and may in-
deed play an important role. The fact that dominant structures can exist in
axisymmetric wake flows and may play an important role is crucial to the
proposed research, as numerical simulations will be employed for these inves-
tigations. For numerical simulations to be useful for providing new insight
into the physics of supersonic base flows, it is therefore essential that the
simulation techniques are such that the role of the large turbulent structures
is accurately represented and the dynamics of the structures can be captured

reliably.

31




w

3. GOVERNING EQUATIONS

The flow is assumed to be an ideal gas with constant specific heat coeffi-
cients and the following assumptions are made for the constitutive relations:
the flow can be treated as a Newtonian fluid with zero bulk viscosity, the
Fourier law is valid for heat conduction, the Prandtl number is constant. in
the region of interest and the viscosity can be evaluated according to Suther-

land’s law.

3.1 Dimensional Equations

The governing field equations for this research are the three-dimensional
compressible Navier-Stokes equations in cylindrical coordinates. Body forces
are neglected and the Prandtl number is assumed constant. The conservative
form of the equations was chosen because it can be put in vector form. This
method was used by Thumm (1991) and is described in Anderson et al.
(1984). Following are the equations in tensor notation, with an asterisk
denoting a dimensional variable.

Continuity:

Py + (P up) 4o =0 (3.1)
Momentum:

(p"u7) o + (P ujui + "0k — Th) 4o =0 (3:2)
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Total energy:

(0"E") o + (P up H™ + g — Thuf) 4o = 0

where the total energy and the total enthalpy are
E* = *rr* 1 L H*_E* p* ivel
=c,I™ + §ujuj and =FE"+ E , respectively.

The stress tensor is

(us e + uf )

DO =

* * Ok 2 * 1% : *

and the heat flux vector

Finally, the equation of state closes the system and is given as
p* — p*R*T* .
Sutherland’s Law is used to calculate the viscosity:
3
v (T*) 2 <T3‘ +R*S‘u)
o \Ig) \T*+Rg,
with

x. = 110.6K

3.2 Non-dimensional Equations

(3.8)

(3.9)

All quantities are made dimensionless by conditions at a reference point

in the flow, which in this case is the freestream/inflow point, and a reference
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length, which will be chosen to be the body radius. All field equations and

constitutive relations are made dimensionless via the set T, u% , o5, T, tag: Kao-

This leads to the following dimensionless groups:

& * * * %
poouoo'r /‘LOOCP
Re = == y Pr =

P Ko
\ (3.10)
ur ux
Ec= C*;’o* ’ M°° = a:o
pt oo 0

The mass, momentum and energy equations are made dimensionless by mul-
* *3

tiplying by r*/pi ul,, r*/piutl, and r*/p% uld, respectively. This leads to

the non-dimensional equations, now given in vector form in cylindrical coor-

dinates.
oU 0A 0B 10C 1
wtatatrat D=0 (3-1)
with
p
pu
U={ pv (3.12)
pw
pE
( pu )
pu2 + D— Tz
A= pUV — Ty, (3.13)
PUW — Ty,

\pU'H + Q= UTyy — VT — ’U)ng)

( pv )

PUV — Ty
B = pvi+p — Ty (3.14)
pVW — Trg

\va + ¢ — UTy; — VT — "UTTO)
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pw
puw — T,
C= PVW — Tr theta
pw? + p — Tog
pwH + q — uty, — VTrg — WThg

pv
PUV — Ty,
D= PUQ - pw2 — Trr + Too
2pvw — 2Trg
pvH + q, — UTp, — UTpp — WTrp

with the stress components

e = g |28 2 (S + Syt )
Tpr = 1 -2uS —g,u(S + S + See)
= R |2#S — 3# (S £ S |
1T 2
Too = 7o _2/1500 L (Sez + Spr + 509)-
Trz = émﬁsrz
Toy = —1—2uSg
2 = 1o 2156
1

Trg = Egzﬂsre .

The strainrates in cylindrical coordinates are:

ou ov 10w w

Szz=$,5rr=5,soe=;‘59—+;,

1/0u Ov 1 /0w 10u
Srz='2‘(5;+-a—z> ,S&—a(*a;-i—;@) and Spr =

1
2

(

1ov
r 00

(3.15)

(3.16)

(3.17)
(3.18)
(3.19)
(3.20)
(3.21)

(3.22)

(3.23)

dw
Tar T

(3.24)
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Non-dimensionalizing Sutherland’s Law yields

1+ RS“) (3.25)

3
u(T)=T: <m

Note that since the Prandtl number is assumed constant throughout the flow

field, the dimensionless thermal conductivity and viscosity are identical:

p=t =<“CP> ~—(Pr) = =(“°°CP> =5 —k (326)

- * * * ¥
Hoo K* ] HooCp HooCp Koo / PooCp Koo

3.3 Averaged Equations

Following Speziale (1997), applying a filter to the governing equations,
the fundamental equations for LES are found:

the filtered continuity equation

B 0 __
5£+5a;(puk) ) (3'27)

the filtered momentum equations
0, - 0 -  _ —
5 (pu;) + P2r [pustiy + Poix — (Tix — poix)] = 0, (3.28)

and the resolved energy equation

0 0 .~ ~ o~
g (ﬁER) + 5;; ['ﬁukHR +_ljk + Qk — U; (T,’k - paik)] = H, (329)
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where the overbar represents a standard filter (i.e., for this research, the
implicit filter inherent to the discretization scheme with a filter width related
to the grid size) and a tilde denotes the Favre-average defined as

=2 (3.30)

N

The velocity vector u; and the temperature T are decomposed into a Favre-
average and a fluctuating part (denoted by ”) and the pressure p and the
density p are split into the Reynolds-average (denoted by -) and a fluctuating
part (denoted by ’).

The resolved energy F, the resolved total enthalpy H, the resolved heat

flux vector ¢ and the resolved stress tensor 7; are

~ |
E=CUT+-2'U]‘UJ' , H=FE+

TSI

_ 1 ~
, Qp=—kK (m) Ty , (3.31)

Tik = i (g,, - lgjjéik) with gik =

Re" 3 (i g + Ur,i) (3.32)

DN | bt

respectively. The resolved molecular viscosity 7 is computed according to

Sutherland’s law (see e.g. White (1991))

" (T) =K (T) = T4 (%) with Ry = ung (3.33)

o<
Finally, the non-dimensional equation of state determines the resolved

pressure
pT
yMa? '

p= (3.34)

For the current work, v = 1.4 and Pr = 0.70.
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The above equations contain three terms that do not occur in the unfil-
tered equations: the subgrid stress-tensor o, the subgrid heat-flux vector
Qi and the source term II in the energy equation. These terms have to
modelled (see section 3.4). In case of a DNS, where one assumes that all
relevant time and length scales are resolved by the computational grid, the
model terms are set to zero implying ¢ = ¢ = a In the other limit, where

the filter-width is so large that all fluctuations are filtered out, a traditional

RANS is recovered.

3.4 Turbulence Models

If the numerical simulations are not performed in the DNS limit, a closure
is needed for equations (3.27) - (3.29).

The subgrid heat-flux vector is modelled by assuming similarity in the
gradient transport of heat and momentum, relating the thermal eddy dif-
fusivity xr to the eddy diffusivity ur (see below) by a constant turbulent

Prandtl number Pry as described in Speziale & So (1996)

1 ~
Q=g prTh (3.35)

Speziale & So (1996) suggest that for most engineering applications a tur-
bulent Prandtl number of Pry = 0.9 is adequate. Note that for a turbulent
Prandt! number of unity complete similarity is assumed which is the well

known Reynolds analogy for turbulent heat transfer.
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The additional source term II in the energy equation includes a pressure
dilatation term, and terms involving turbulent dissipation and the subgrid
mass-flux. It was shown by Sarkar et al. (1991) that not only the pres-
sure dilatation term but also the compressible dissipation are important in
compressible turbulence. Therefore, both effects are modelled according to

Sarkar et al. (1991) and Sarkar (1992)
p’u;-”j = agﬁaikgikMT + a;;ﬁ&:M% , (3.36)

with the turbulent Mach number (a measure of influence of compressibility

on turbulence)

(3.37)

a*

The turbulent dissipation is defined as 7j;u;’, = pe and the subgrid mass-flux

: —7 1 . :
is modelled as u} = [)_ prp,; . Combining these terms yields the extra source
Op

term :

~ 1
1= (1 — agMT) 'ﬁaikSik —+ (1 —_ CLgM%) ﬁE - (.771‘]9 - ﬁézk) [/;—T (E) :| s
ok

with the constants a; = 0.15 and a3 = 0.2.

For the computation of the subgrid-stress-tensor o, an explicit alge-
braic stress model is used. It was derived from the explicit solution of the
equilibrium form of the modelled Reynolds stress transport equation for in-

compressible flows in Gatski & Speziale (1993) and extended to compressible
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flows by Speziale (1997). The model is of the form of an anisotropic eddy

viscosity model with strain-dependent coefficients:

2 K?(~ 1=
Uﬁ = §K5zk - al? <Sik - ‘?;SJJ‘szk)
*K3 e ~ o~
% (Sz]ij + SkJWJz)
KS —_ o~ 1~ ~
+ a;—a—z— (Sijsjk — gquSpqéik> . (339)

To remove the possibility of singularities, a regularized version for ¢ is used:

1 2
o 3 N 3(1+7n?)

=g . 3.40
i TN R 62 Y32 + 62e2 1 62 (340)

The terms 1 and ¢ are related to the irrotational and the rotational strain

rate invariants according to

_ agK = o %

=222 (Woaso) (3.41)
_ 10[3 K/~ ~ ";'

n= 55;? (Spqqu) ' (3-42)

For compressible calculations the constants «; are given as a; = 0.37436,
o = 0.11518, and a3 = 0.10799. For ”incompressible” boundary layer test-
calculations the incompressible constants a; = 0.227, ap = 0.0423 and o3 =

0.0396 were used!. The turbulent eddy viscosity is given by

=172

K
= C,ﬁ-s-— with C, = 0.09 (3.43)

The turbulent kinetic energy K and the turbulent dissipation rate ¢ are

computed solving two additional transport equations (see Wilcox (1998))

1For a; = 2C,, and a2 = a3 = 0 equation (3.39) reduces to the standard K — £ model.




which are given here in dimensionless form:

0 _ 0 ——~ HT oK _

5% (pK) + —a?k' [pukK - (,U,-f- '&7{-) 5‘2;} = —H, (344)
o ,_ 0 [~ pr\ O | _ N P
& (pe) + a_x,: [ﬂuk€ - (IH‘ }‘E—) B_xk] = _Celp'fozk (uz,k 3U1,351k>

_&?
- Ce2fs2p—k_

g2 4
— — =pet;;, (34
% ~ 3Pl (3.45)

1

+ CE3ﬁR612"

with the constants o = 1.0, 0. = 1.3, C; = 1.44, C;p = 1.83 and C.3 =
0.001. The source term of eqn. 3.44 is the negative value of the source term
in the energy equation because any production of turbulence kinetic energy
must be equal to the dissipation of the averaged energy. The turbulent

Reynolds number is defined as:

=12
Rer = B—}{— . (346)

To remove a singularity at walls (i.e., K = 0) in the destruction term of the

e-equation, a damping function of the form
fo=1=ezp (—Re\/O.lKN) (3.47)

is used, where N is the wall-normal distance. In the ASM model, this wall-
damping function is the only term containing a wall distance, the Reynolds
stress model automatically accounts for near wall effects through the compu-
tation of . To be completely independent of any kind of wall function, the

idea of Durbin (1993) is also implemented. It incorporates the assumption
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that the smallest physical time-scale in a turbulent flow is the Kolmogorov

time-scale. Therefore, by computing the turbulence time-scale as

K [—IE,CT = ] , (3.48)
€ € Repe

with Cr =~ 6 and setting f.o = 1, a completely wall-distance independent

model is obtained.

3.5 Flow Simulation Methodology (FSM)

An important aspect of ongoing research is the application of the Flow
Simulation Methodology (FSM). The fundamental concept of the methodol-
ogy was already introduced in section 1. The details of the implementation
are given now.

In FSM the turbulent stress tensor that is fed back to the filtered Navier-

Stokes equation is scaled with a contribution function,
o = F(A/ L) oF, (3.49)

where A = [(Az? + Ay? + A2?)/3]'/2 is the representative computational

grid size and Ly = v%/4/¢'/*

is the Kolmogorov length scale. The final form
of f(A/Ly) has not yet been determined, but for the current work it was

chosen to be of the form proposed by Speziale (1997):

_BANT
fA/L)=1-¢e Ln | | (3.50)
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where § and n are adjustable parameters.

As the ratio %f— becomes small (the grid resolution is sufficient to re-
solve structures the size of the Kolmogorov scale), f(A/Ly) approaches zero
and the computation will approach the DNS-limit. For insufficient resolu-
tion, f(A/Ly) approaches unity and the RANS-limit is approached. For all
intermediate values of the contribution function, a ”non-traditional” Lafge

Eddy Simulation (LES) based on a state-of-the-art Reynolds Stress model is

performed.
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4. NUMERICAL PROCEDURE

4.1 Overview

For the spatial derivatives, we are now using high order-accurate finite-
difference approximations (sixth order in the axial and radial directions) and
a pseudo-spectral (Fourier) decomposition in the azimuthal direction. This
high accuracy is necessary for efficiently carryiﬁg out the highly demanding
simulations of the dynamical behavior of the large structures in supersonic
wake flows. In fact, during the years with funding from the ARO grant, we
have drastically improved the spatial accuracy of our Navier-Stokes code.
Direct Numerical Simulations of turbulent wake flows for higher Reynolds
numbers, as performed in this research, require increasingly better numerical
resolution for increasing Reynolds numbers as the size of the spatial scales
decreases with Reynolds number. The use of finer and finer grids is limited
by the memory and computing power of currently available supercomputers.

Therefore, using spatial difference approximations with higher accuracy
will allow numerical resolution of the increasingly smaller scales without re-
quiring a decrease of the grid intervals. From experience with our previous
fourth-order-accurate code (using standard difference approximations) and
from our experience using compact finite differences for incompressible sim-

ulations (Meitz & Fasel (2000)), we came to the conclusion that the consid-
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erable demands regarding accuracy for simulations of turbulent supersonic
wakes could be best met by employing compact difference approximations of
at least fourth-order accuracy. Toward this end, we have entirely revamped
our previously developed code and implemented compact differences where
the order of accuracy is adjustable between fourth and sixth order. This is ac-
complished by allowing the coefficients in the approximations to be adjusted
so that the accuracy (spectral accuracy) can be tailored to the particular
needs of the simulation.

The advantage of employing high-order compact differences versus stan-
dard differences is apparent from Figure 4.1, where the numerically modified
wave number of the computed scales is compared with the actual (physical)
wave number of the scales (which should be resolved in the simulation). It is
obvious that the drop-off in these modified wave numbers starts much earlier
for a standard fourth-order approximation than for a compact difference of
the same formal accuracy.

Use of methods with high accuracy, and thus employing compact differ-
ences, is equally beneficial for Large-Eddy Simulations (LES) and, in partic-
ular, for our new FSM (see discussion in 3.5). Of course, the higher accuracy
allows use of larger step sizes for the Navier-Stokes computations for the
resolved scales and therefore reduces demands on computer memory and

computing power. In addition, and this is crucial, the higher accuracy allows
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Figure 4.1 Modified wave number versus physical wave number. Comparison
of standard and compact difference approximations.

rigorous testing and validation of the turbulence models (required for the
unresolved subgrid scales), which have to be employed in LES. Using lower-
order-accurate difference approximations does not allow a clean separation
of the effects of the subgrid-scale turbulence model from the effects of the
truncation error and, therefore, the role of the model cannot be scrutinized.
In fact, in many LES investigations published in the literature, the trunca-
tion error of the numerical method played a more important role than the

subgrid-scale model itself and therefore totally contaminated the results.
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4.2 Vectorized Equations in Cylindrical Coordinates

All transport equations given in section 3 can be written in the form of

an advection and a diffusion term on the left hand side and a source term on

the right hand side. In cylindrical coordinates the structure is:

100 1

oU 0A 0B
A Dp=3. 41
o "8 " or Trog 7 (4.1)
with
AU
@ (2
Us pU
U=|Us|=| pw (4.2)
Us PER
Us oK
\0:) \ 7 /
ou
{ﬁl\ ( put+p— (T2z — PO22)
e P — (Try — BOy2)
A= A3 — pﬂ@ - (-7_:02 - paﬂz)
A: pEHR + qz + Qz - ﬂ (7_;22 - ﬁazz) - E(Trz - ﬁarz) - Iw (?02 - ﬁa&%)
Ag puK — ('}% + ﬁ') %_I:
\A7) \ 'p‘ﬁs—(-,’;—e+§£)§§-
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B: :—O‘EHR + qr + Qr -u (77‘2 - )50'1'2) -7 (?rr - ﬁo'rr) —w (?7'0 - ﬁCTro)
B, POK — (f ) 5
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(4.4)
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with II, IIx and II, being the source terms given in equations 3.38, 3.44 and

3.45 respectively.

4.3 Azimuthal Fourier Transforms

Water tunnel results conducted by Siegel (1999) show that the flow picks a

symmetry plane that moves on a time-scale much slower than that of interest

for the unsteady structures in subsonic, incompressible flows. As in previous

work on this topic by Tourbier (1996), symmetric Fourier transforms are

therefore used in the azimuthal direction to achieve a significant reduction in




49

computing time. Previous work by Bourdon & Dutton (1998) shows that even
the compressible flow shows some symmetry in azimuthal direction and the
most recent publication by Bourdon & Dutton (2001) shows a clear symmetry
of the flow in circumferential direction if delta-shaped disturbances on the
body are used. Note that using symmetric transforms enforces a symmetry
plane similar to the way the surface disturbances do in the experiment. For
simplicity, only the equations for the DNS version of code (5 equations solved
in vector form) are shown in Fourier space.

Replacing each flow variable with the appropriate sine- or cosine- trans-

form gives
7k (r, z) cos k6 Ak(r, z) cos k6 B¥(r, z) cos k6
5 & *(r,z) cos k@ 8 k | Ak(r,z)coskf 5 K BE(r, z) cos k8
hd Tk g ik 9 Ak
5 Z Ag;c(r, z) cos k6 6 Z 42(1", z)coskf | + 5 Z Big;c(r, z) cos ko
k=0 | Ug(r,z)sin k@ k=0 s(r, z) sin k6 k=0 & (r,z) sinké
¥(r, z) cos k@ A¥(r, 2) cos k6 BE(r, z) cos ko
:{“(r, z) sin k@ D¥(r, z) cos k
1 5 X %(r, z) sin kf 1 k | DX(r,z)coskd
;6— Z %(r, z) sinkf ; Z DE(r,z)coskf | =0 (4.8)
k=0 | C¥(r, 2)coské k=0 | Dk(r,z)sinké
(r, z) sin k6 DE(r, z) cos k@

Commuting derivative and summation, and using the orthogonality of the

sine and cosine function yields an equation for each Fourier mode k,




Tk (7, 2) Ax(r, 2) Bk(r, 2) kC¥(r, z) + D¥(r, z)

o |G | 5| &ma | 5| Bema | | kChea+Die
5 J§ (r, 2) +a, Af(r, 2) +a 3§ (r, 2) += kC§(r, 2) + Dj(r, 2)
*(r, 2) Ak(r, 2) k(r, 2) —kCE(r, 2) + D%(r, 2)

¥ (r.2) A(r ) (. 2) KC(r, ) + DA (r, -

(4.9)

This set of equations is now solved with finite differences in the radial and

streamwise direction as described in section 4.5.

4.4 Parity Conditions for Fourier Modes of Functions in Cylin-
drical Coordinates

Another challenge of this research has been the computation at the axis,
which in cylindrical coordinates is represented by r = 0. The treatment of
this boundary is discussed in the following. Axis boundary conditions are
derived for the Fourier modes of functions in cylindrical coordinates that are
necessary for the function to be smooth.

Consider smooth (C*) functions, either scalar, vector or second order
tensor in a cartesian coordinates s,? rotated by angle ¢. Smooth implies a

convergent Fourier representation,

£0r,6) =3 fulr)e*. (4.10)
k=0

The complex representation is used only for convenience, as all functions

of interest here are real-valued.
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On s, the cylindrical coordinates and unit vectors are given by,

r=|s| (4.11)
_ 9,8>0
9—-¢+7r,s<0 (4.12)
d’n n dn
e*? = sgn*(s)etk? (4.14)

Parity conditions for the Fourier modes will be derived by requiring the
existence of all derivatives on s at the origin. For the scalar case, this is

@ im i) (4.15)

Even if f is a smooth function, radial derivatives of f need not be con-
tinuous at the origin due to the coordinate singularity. Even so, the Fourier
modes of functions that are the radial derivatives of smooth functions have
notable parity properties. These are seen almost by inspection of the Fourier
representatioﬁ, given that fi(r) is either even or odd in 7. One may note that
any odd order of radial differentation will switch the parity ”state” relative
to the original function, while an even number will not.

Define ”even parity” as being an even function in r in the even Fourier

modes, while being an odd function in r in the odd modes. ”Odd parity” is

o1




then being an even function in the odd modes, etc. For functions with even

parity,

2nr) (r) = even k -+ n even
* odd k+nodd

Functions with odd parity have

Anr) (r) = even k+n odd
k odd &k +neven

Note that derivatives in # do not change the parity of a function.

4.4.1 Scalars

The Fourier representation of f is

o0

= fells))e*sgn’(s),

k=0

or in general,

F(s) =" fM(Is])e*sgn® (s)sgn™(s) .
k=0

Substituting this into equation 4.15,

[o o]
Z f(n qus (k+n) — Z f,ﬁ”’(O) ik
k=0

or
w ~ .
Zflgn)(o)ezw [1 _ (_1)(k+n)] =0
k=0

or

oo

Z 2f(n)( ) k¢ — .

k=0,n+k odd

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Since this is required for all ¢,
f(0) =0,V n+k odd, (4.23)

that is, scalar functions have even parity.

4.4.2 Vectors

Consider now a smooth vector field f with (convergent) Fourier represen-

tation
[o.¢]
£(r,0,2) = Z ( (r, 2)e, + (T, 2)eq + hy(r, z)ez) ik6 (4.24)
=0
with
e, = sgn(s)e; (4.25)
ey = sgn(s)e; (4.26)

On s, f is represented by,

xR
Z [(fk Is], 2)es + gi(|s], 2)e ) sgn(s) + hk(|s|,z)ez] e*¢sgn® (s)
k=0
(4.27)
Taking the n-th derivative in s and taking the two-sided limit as before,

we obtain

o [ funr(0,2)es [1— (=1)nte+t
0= E { +Gi0r (0, 2)€y [1 — (—1)"FF+] } ¢ikd (4.28)
+h e (0, 2)e, [1 = (=1)™F*]
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or,

0= > 2few(0,2)e,e™ (4.29)

n+k even

[e ¢]
+ Z 20 nr (0, 2)e,™¢
k=0
n+k odd
Again invoking orthogonality,
frnr(0,2) =0, n+ k even

Gknr(0,2) =0, n+ k even (4.30)
hinr(0,2) =0, n + k odd,

so the radial and azimuthal vector components have odd parity, while the

axial component has even parity.

4.5 Compact Differencing on Arbitrary Grids

The transport equations given in Fourier space in equation 4.3 are dis-
cretized with compact finite differences in the radial and streamwise direc-
tion. Sixth-order split compact finite difference stencils are derived in the
following. These differences are valid on a non-equidistant grid instead of
the usual mapping of the computational domain to a uniform grid. This
results in greater flexibility of the choice of grids and was shown to lead to a

lower truncation error by Meitz & Fasel (2000).
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4.5.1 Derivation

Consider an ordered set of points {z;}, with z; # z; for i # j. It is
helpful to define a characteristic grid spacing Az which can be set as desired;
Az = 17 — xp is chosen here. Note that this implies, mathematically at least,

that the grid is refined uniformly. Define a dimensionless grid spacing by

T — X
b = "Ax 0. (4.31)

Define the finite difference stencil by

ko l2

5f 1
E 473 % = E E b fi, (4-32)
k=k; Tk 1=l

where it is assumed for simplicity that the stencil spans z, for both function

values and derivatives, that is,
kike <0 (4.33)

Li, <0

The stencil is homogeneous in its coefficients. One condition on the coeffi-

cients can be selected arbitrarily.

=1 (4.34)

This is selected to allow a direct comparison of the truncation error term

between compact and standard stencils. The expression for the truncation
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error is
1 & ks
(Z Q== Z;szfl) - (Z ai f'(zx) — —Zbu%)at 35)
k=k; 1=l k=k; 1=l
1 12 ko
p— !
= Az ;blfl - ; ar f' (k) (4.36)
=iy =K1

Expand f'(xy) in Taylor series about zy. Since 0° is not defined, first pull

out the zero term in each sum.

1 & &2 1
T=-— Y bfi— >, af(zx)+-—bofo—aofy (4.37)
AT | T k=ky,k£0 Az

Z szf(’) (@1 — Zo)’ Z Zf““’ o) ﬁbofo—aofé

Tt G=0 k=k1,k#0  j=0
(4.38)
Exchange order of summation and shift an index
( )1 1 . 0 N~ (@ sy
= ——‘bofo aofo‘i'Zf] . Z bi(z1—20)’ ij Z ak('——l)'
z 11 ,1#0 ‘ j=1 k=k),k#0 J )
(4.39)

Introduce dimensionless grid and collect like powers of Az

% (J) b2 fJ) k2 _ ,
:—-—bofo a0f0+z i > b Az Z Y 3 jard T AL

T i=l,l#£0 j=1 k=k1,k#£0
(4.40)
f(j) l2 . k2 .
—_—“—bofo ao fo+fo Z bzASC_l-i-ZACC’ 1_97_ Z bz5lj—2jak5i_l
I=ly,l#0 T =0 k=k;
k#0
(4.41)
1 Iy ) . lféj) ko -
- _ / j-1J0 J Y A
T = Az fo Z bl aofo + Z Az j' Z b15 Z: ]akd (442)
=0, j=1 I=1y,l#0 k=k,




Iy Iy ks
1
T=fo > bi—aofi+ f} L > b - > a

1=y, =l1,1#0 k=ky k0 1=l
(4.43)
Note finally that §; = 0
1, &
T =l gb, (4.44)
la ko
1PN IEDY ak]
1=l k—kl
f(]) ) _
+ ZAmJ 1 Zbléﬂ 3 jaxe] !
1=l k=k1

A difference formula of order m requires all terms of order n < m in Az

to be zero. Including the scaling equation, this gives,

k2

Y a=1 (4.45)
k=k1

133
> =0 (4.46)
=l

l2 ko
Z b,(S, - Z ap = (447)
=l k=k;

lo k2
> bl - jadl Tt =0,j=2,.,m (4.48)
=1l k=ky

As expected, a stencil of order m requires m+2 equations. This is the same as
the number of known values in the stencil, (function value and derivatives).

When these conditions are met, the truncation error becomes,

(m+1) l2 k2

T=Azm20 T D bd™ Y = 3 (m + Dardp (4.49)
m+ =l k=k;

o7

(7)
432 agii 88 [Zb,é” -3 ot
j=2 !

k=k;




This can be arranged in a matrix equation and solved for specific grid point
values. Alternately, the matrix can be inverted symbolically using a computer
algebra system such as Maple or Mathematica, and the solution translated

directly into source code.

4.5.2 Analysis of the compact difference stencils
4.5.2.1 Modified Wavenumber
Examine the effect of equation 4.32 when applied to a single mode f(z) =

e, The exact derivative is

% f = ike*® (4.50)

where k will be called the exact wavenumber. Define the modified wavenum-
ber k' by

— = iK' (4.51)

k' is found by substituting 4.51 into 4.32.

I bl eih:AmJI
KAz = —i S — — (4.52)
Ek:kl ayetrATly
4.5.2.2 Amplitude and Phase Error
Consider the linear model convection equation in one dimension,
0 0
—c—f=0 (4.53)

ot or




with initial condition

f(z,0) = e*= (4.54)

The exact solution at ¢t = At is
fz, At) = e(=—cAD (4.55)
— irT p—iv(kAT) (4.56)

where v is the CFL number. We characterize this by the exact amplitude

and phase, given by

A= |emrAD)| = 1 (4.57)

® = —vkAz (4.58)

If the standard fourth order Runge-Kutta scheme is applied to equation

4.53 along with an approximate x-derivative,
o
f(z, At) = " Z = (—ivk'Az)* . (4.59)

k=0 k'

The numerically obtained amplitude and phase are then
1
A=Y = (—ivk'Az)*| (4.60)

(4.61)
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Figure 4.2 Radially and axially stretched grid for typical DNS (full domain
extends to r = 10 and z = 25, only every other grid point shown).

Examples are shown for an exponentially stretched grid and various com-
pact stencils in figures 4.3 and 4.4. A typical grid for a DNS is shown in
figure 4.2.

Figures 4.3 and 4.4 show an analysis of different spatial discretizations
in combination with a fourth-order Runge-Kutta method at CFL = 0.15
applied to the linear wave equation. It becomes clear that the sixth-order
compact differences have a far superior wave-number accuracy (see Modified
Wavenumber plot). However, when the stretching of the grid is accounted
for in the analysis, the amplitude plot shows that for stretching factors larger
than unity, amplification will occur in the higher wave-number region. Ther-
fore, a spatial filter has to be employed. For this research, a fourth-order

compact filter was chosen.
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Figure 4.3 Modified wavenumber, Amplitude and Phase distribution for a
fourth order explicit scheme on a stretched grid in combination with a fourth-
order Runke-Kutta time-integration for CFL = 0.15
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Figure 4.4 Modified wavenumber, Amplitude and Phase distribution for a
sixth order compact scheme on a stretched grid in combination with a fourth-
order Runke-Kutta time-integration for CF'L = 0.15




4.6 Time Integration

A fourth-order Runge-Kutta method is used for the time-discretization.
In this case, four intermediate timesteps are used, which Ferziger (1981)

writes as

b= b+ 5 1(0w)
G2 = ¢y + -A2—tf(¢1) (4.62)
¢3 = ¢n + Atf(¢2)

Pn+1 = Gn + % [f(én ) +2F(61) +2f(d2) + f(43)] .

If the first three steps are substituted into the last, the result is

2 3 A4
Buit = ba+ AL (60) + S 00) + L) + B F 0. (463)

Thus, the method is of fourth order in At. As written above, three interme-
diate levels of variables (@1, @2, ¢3) are needed. With some manipulation,

the form used in the code can be obtained, which uses only two intermediate
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variables:

b1 = but SF(6)

¢ = ¢+ —A—2ff(¢1)

¢1 = 1+ 20 (4.64)
$2 = dn + Atf(d2)

m=§em+m+m)

Ony1 = O1 + %f(¢2)~

4.7 Integration Domain

For the numerical simulations, the integration domain is divided into two
sub-domains. One domain contains the boundary layer on the axisymmetric
body and extends to the corner of the base. The second domain starts at the
base and extends to the outflow boundary (Figure 4.5). As in the simulations
by Tourbier (1996) only the last part of the approach flow is computed with
the inflow boundary layer being another parameter in the simulation.

The numerical simulations are performed in two steps. In the first step,
a steady base flow is computed by solving the Navier Stokes equation for an
axisymmetric geometry. In the second step, the unsteady, three dimensional
flow is computed using the steady base flow (computed in step 1) as the initial

condition. Thus, the Navier-Stokes code consists of two main components,
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Figure 4.5 Computational Domain.

one for calculating the steady, axisymmetric base flow and the other for

calculating the unsteady three dimensional flow.

4.8 Boundary Conditions

For the inflow boundary, the axial and azimuthal velocity and the tem-
perature are set to a constant value. In a subsonic calculation, either a
Dirichlet condition for pressure and turbulent kinetic energy and dissipation
rate and a Neumann condition on radial velocity can be set or vice versa.
For supersonic simulations the pressure is fixed in the supersonic region and
a Neumann condition is used in the subsonic part of the boundary layer.

The outflow boundary is computed via one-sided stencils, setting the




second derivative to zero. Only for subsonic cases, the pressure can be set to
a constant value.

The freestream boundary is set according to Thompson (1987) for super-
sonic cases. In subsonic cases, this siplifies to Neumann conditions.

At the walls, no slip and no penetration is enforced on all velocity com-
ponents and the turbulent kinetic energy is set to zero. Pressure can be
either computed at the wall through the wall-normal momentum equation or
a Neumann condition can be applied. Temperature can be set to a constant
value or computed through a high-order extrapolation, i.e. either isothermal
or adiabatic walls are specified.

For all boundaries mentioned above, the density is computed through the

equation of state for a perfect gas.
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5. CODE VALIDATION

5.1 Navier-Stokes Code for DNS

For validation of the first component of the Navier-Stokes code (for cal-
culating the steady axisymmetric base flow), an axisymmetric wake for a
free stream Mach number of M = 0.2 and a global Reynolds number. of
Rep = 1,000 was calculated and compared to results from a calculation us-
ing an incompressible Navier-Stokes code developed by Schwarz et al. (1994)
[Rep = (u0oD)/Veo, where D is the diameter of the body]. For the incom-
pressible simulations, the Navier-Stokes code of Schwarz et al. (1994) is based
on a vector potential vorticity formulation. In addition, the numerical com-
ponents of the code are also very different from the ones used in our present
code. Comparisons between the compressible and incompressible simula-
tions have shown very good agreement. Comparison of a global quantity,
the length of the recirculation zone, and a local quantity of the flow field,
the azimuthal vorticity at the corner of the base, showed practically identical
results. For validation of the other component of the Navier-Stokes code for
calculating the unsteady (disturbed) flow, the response of the steady sub-
sonic flow field for M = 0.2 and Rep = 1,000 (obtained from the steady
calculation as discussed above) to a three dimensional disturbance input was

calculated and compared to calculations by Schwarz et al. (1994). The dis-
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turbance was generated by a single pulse at one location in the near wake
region. With this disturbance generation, a broad spectrum of disturbance
frequencies is introduced into the flow field. From the incompressible simu-
lations by Schwarz et al. (1994), it was found that, for the global Reynolds
number of Re = 1,000, the flow field includes a region of absolute instability
with regard to three dimensional (helical) disturbances. For additional vali-
dation of the DNS code, we calculated the response of the flow for the same
conditions as above (M = 0.2, Rep = 1, 000) to strong, nonlinear, continuous
excitations through a blowing and suction slot. The disturbances introduced
were purely in the first helical Fourier mode (k=1). The results were directly
compared to experiments that were conducted in our hydrodynamics labora-
tory water channel. A typical response of the flow field is shown in Figure 5.1,
where instantaneous contour lines of constant azimuthal vorticity are shown.
In this view, the flow field exhibits energetic alternating structures (with an
amplitude of 15% of the free stream velocity) that are strongly periodic. In
fact, Figure 5.2, which is for the same time instant, a view of a plane 90°
from that in Figure 5.1, confirms that this instantaneous flow field consists
of two counter-rotating helical modes. Numerical flow visualization obtained
from the DNS data, as shown in Figure 5.3 and 5.4, was also compared to
physical flow visualization of the laboratory experiments. The agreement

between numerical and experimental observations was remarkable. As in the
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Figure 5.1 Isocontours of constant azimuthal vorticity for M = 0.2 and
Re = 1,000, § = 0°.

experiments, the frequency of the developing structures also locked in to that

of the forcing frequency.

5.2 Reynolds Averaged Navier Stokes

The turbulence model was first validated with a flat plate, zero pressure
gradient turbulent boundary layer because of the available data for this case
and the experience our research group has had with that case in the past.
Figure 5.5 shows the streamwise velocity in wall coordinates to emphasize
the near-wall behavior. The simulations were run using the ASM in domain
1 (see figure 4.5) at M = 0.2 with the incompressible coefficients «; given in

section 3.4. As initial condition, a laminar boundary layer profile was cho-
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Figure 5.2 Isocontours of constant azimuthal vorticity for M = 0.2 and
Re = 1,000, 6§ = 90°

Figure 5.3 Flow visualization using particles. From DNS data: M = 0.2 and
Re = 1,000, 6 = 0°.
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Figure 5.4 Flow visualization using particles. From DNS data: M = 0.2 and

Re = 1,000, 6 = 90°
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Figure 5.5 Streamwise velocity in wall-coordinates for turbulent boundary

layer (incompressible model).

100

1000

71




sen for the velocity field and both turbulent quantities K and ¢ were set to
a constant (typically 1073) throughout the domain. A derivative condition
was prescribed for K and ¢ at the inflow. This method was chosen to ensure
that the numerical procedure is capable not only of maintaining a correct
solution but also of producing a meaningful result from conditions that differ
significantly from the desired final state. The results of an ASM case using
the ramping function f.» and computations of the wall distance independent
ASM (see equation 3.48), varying the constant Cr, are compared to the the-
oretical curves (laminar sublayer with Ut = y* and logarithmic law region
with Ut = 2.5log(y™) + 5.1) and a case run by D. von Terzi using a com-
pressible code in Cartesian coordinates written in C (NSCC). All simulations
share a slope that is slightly too steep, but otherwise the agreement to the

theoretical curves is satisfactory.

5.3 ASM Results for Subsonic Wakes

Initially, the turbulence model was tested in ”full wake mode” for an in-
compressible case at M = 0.2 with Rep = 100, 000 to demonstrate the ability
of the ASM to capture unsteady structures (the incompressible case develops
larger structures due to the lack of the damping due to compressibility). A
typical result is shown in figure 5.6. Shown are instantaneous contours of

vorticity and it is clearly visible that the shear layer develops a strong insta-
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Figure 5.6 Instantaneous contours of azimuthal vorticity for 2D-URANS;
Rep = 100,000; M = 0.2.

Figure 5.7 3-dimensional distribution of turbulent kinetic energy for 3D-
URANS; Rep = 100,000; M = 0.2.

bility with roll-up of vortices even if the turbulence model is fully switched
on and no external forcing is applied.

Several 3-D URANS computations were carried out for the same subsonic
test case. Figure 5.7 clearly shows that the distribution of turbulent kinetic
energy has significant variation in azimuthal direction and, therefore, justifies

the approach of coding all turbulent variables fully three-dimensional.
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5.4 Flow Simulation Methodology

In addition, we have implemented the new Flow Simulation Methodology
(FSM) together with the new tur‘t;ulence models that are an integral part
of FSM. We have tested and validated almost all of the critical individual
modules of the FSM.

Typical results from validating the individual modules of FSM are pre-
sented in Figures 5.8 and 5.9. These figures were selected to demonstrate
the role of the contribution functionf(A/Lg), (equation 3.50), which is the
crucial element of the FSM. An incompressible turbulent flat-plate boundary
layer was chosen for this validation because a wealth of experimental, theo-
retical, and numerical data is available for comparison. Shown in Figures 5.8
and 5.9 are color contours of instantaneous spanwise vorticity and overlaid
are isolines of instantaneous kinetic energy. The results in Figures 5.8 and
5.9 are from FSM calculations with different values of 3 (equation 3.50). A
large value of § leads to a larger contribution of the turbulence model to the
stresses, which in essence is equivalent to carrying out a simulation with a
coarser grid [for Figure 5.9]. Therefore, comparing Figures 5.8 and 5.9, it is
obvious that details of the flow due to smaller structures are removed when
the contribution of the model is increased. Nevertheless, the high coherence

of vorticity and turbulent kinetic energy is remarkable, even as fewer details
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Figure 5.8 FSM applied to turbulent flat-plate boundary layer (incompress-

ible). Color contours of instantaneous spanwise vorticity and isolines of in-
stantaneous turbulent kinetic energy: FSM: § = 0.02.

of the instantaneous flow field are resolved.

As discussed in section 3.5, with f(A/Lk), the contribution of the turbu-
lence model adjusts locally and instantaneously during the simulation from
which Figures 5.8 and 5.9 were obtained. For example, for the same bound-
ary layer simulation, Figure 5.10 shows the time-averaged f(A/Lg). It is
obvious that the contribution function behaves as expected. The contribu-
tion of the model is large close to the wall, where the physical resolution
(grid size compared to Kolmogorov length scale) is coarse. The contribution
then decreases since the Kolmogorov scale increases with increasing distance
from the wall. This is a clear demonstration that the contribution function,

equation 5.10, is performing as it was designed to perform.
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Figure 5.9 FSM applied to turbulent flat-plate boundary layer (incompress-

ible). Color contours of instantaneous spanwise vorticity and isolines of in-
stantaneous turbulent kinetic energy: FSM: 8 = 0.05.
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Figure 5.10 Time-averaged profiles of f(A/Lk) relative to local boundary
layer thickness for cases shown in Figures 5.8 and 5.9 and for larger values

of f(A/Lk).
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6. RESULTS

6.1 DNS
6.1.1 Steady (Undisturbed Flow)

We have performed supersonic calculations for a Mach number of M =
2.46 [experiments of Herrin & Dutton (1991) and the Reynolds averaged
calculations by Sahu (1992)]. We made calculations for different Reynolds
numbers in order to explore the effect of Reynolds number on the resulting
flow field. For the same Reynolds number as for the subsonic case, Rep =
1,000, the base pressure was found to be much lower for the supersonic
case than for the subsonic case, which is consistent with the experimental
observations of Herrin & Dutton (1991). However, in the experiments, the
pressure distribution was found to be practically constant along the base,
while it varied by almost 20% in the numerical results. A variation of pressure
along the base was also found in the Reynolds averaged calculations (using
turbulence models) by Sahu (1992) and by Sturek & Nietubicz (1992). One
may speculate that the different behavior of the base pressure along the base
is due to the action of the large structures, which is not included in our
steady base flow calculations and may not be adequately represented in the
turbulence models used in the Reynolds averaged calculations. In fact, results

from our numerical simulations discussed below support this conjecture. An
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Figure 6.1 Contours of constant pressure for Re = 18,000, M = 2.46.

answer to this speculation is of considerable relevance for the development
of improved turbulence models. In order to obtain a closer comparison with
the experimental data by Herrin & Dutton (1991), we also calculated steady
flow fields for Reynolds numbers up to Rep = 100,000, with a boundary
layer thickness at the corner of § = 0.07D, which matched the boundary
layer thickness of the experiment. A typical result for Rep = 18,000 in the

form of constant pressure contours is shown in Figure 6.1.

6.1.2 Unsteady (Disturbed) Three-Dimensional Flow.

To investigate the absolute stability behavior of the supersonic base flow,
a pulse disturbance was introduced iﬂto the recirculation region. For the first
calculation, we used the same Reynolds number as for the incompressible cal-
culation ( Rep = 1,000). After an initially very short strong response of the

flow field, the disturbances decayed everywhere. Increasing the Reynolds
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number, 2,000 < Rep < 25,000, showed no difference in the disturbance re-
sponse: disturbances decayed after a relatively short time with the exception
that the decay rate decreased with increasing Reynolds number. Thus, in
contrast to the subsonic case, where an absolute instability exists with respect
to helical disturbance modes, the calculations for M, = 2.46 and Reynolds
numbers up to R¢D = 25,000 showed no indication of absolute instability
with respect to helical or axisymmetric modes. Therefore, it appears, as
has been expected, that supersonic wake flows are more stable than their
incompressible counterparts. This conjecture is consistent with the findings
of Chen et al. (1990) for a two dimensional compressible wake, where the
growth rates of disturbances were found to be up to an order of magnitude
smaller than for a comparable incompressible wake and structures appeared

to diffuse much faster.

6.1.3 Search for Absolute Instability for Supersonic Axisym-
metric Base Flows

As seen from the previous discussion, the results for the supersonic flow
field of M = 2.46 and Reynolds numbers up to Rep = 25,000 do not exhibit
an absolute instability. Since compressibility has a stabilizing effect (as dis-
cussed above), we decided to perform a simulation for a lower Mach number
to see if an absolute instability would arise. Thus, we calculated the flow

field for a Mach number of M = 1.2 and Rep = 4,000 (Tourbier & Fasel
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Figure 6.2 Time response of radial momentum at 2z = 0.5 and r = 0.5
for three different azimuthal Fourier modes (k) to a three-dimensional pulse
disturbance in the near wake for M = 1.2 and Rep = 4, 000.

(1994)). As before, the flow field was disturbed by introducing a single pulse
locally in the recirculation region. A typical temporal response of the flow
field is given in Figure 6.2. It is obvious that, for different azimuthal Fourier
modes, the disturbance grows exponentially in time until it reaches a state
of nonlinear saturation. This is a clear manifestation of the existence of an
absolute instability.

An impression of the instantaneous flow field can be obtained from Figures
6.3 and 6.4. Shown are instantaneous contour lines of the azimuthal vorticity
after the disturbance has reached the state of nonlinear saturation. Large
structures can be observed in the near-wake region. In order to investigate

the influence of the structures on the global flow field, the (time-averaged)
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Figure 6.3 Isocontours of constant azimuthal vorticity for M = 1.2 and
Re = 4,000, 6 = 0°.

Figure 6.4 Isocontours of constant azimuthal vorticity for M = 1.2 and
Re = 4,000, § = 90°
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Figure 6.5 Base pressure distribution for a steady axisymmetric flow field
and a time-averaged unsteady flow field for M = 1.2 and Re = 4, 000.

mean flow was calculated. A comparison of the base pressure obtained from
a steady calculation and that obtained from a time-averaged mean flow cal-
culation is shown in Figure 6.5. Clearly, the presence of the large structures
causes a drop in the base pressure. Also, for the unsteady calculation, the
distribution of the pressure along the base is virtually constant, which agrees
with observations in experiments, while pressure varies strongly for the steady
calculation. These results are a strong indication that the action of the large
structures is responsible for the flat base pressure distribution observed in
experiments. Thus, there is further evidence that this may also be the reason
why Reynolds-averaged calculations have difficulties in reproducing the flat
pressure distribution.

In other simulations for M = 2.46, we pushed the Reynolds number

to Rep = 100,000. As before, the flow field was disturbed by a single
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Figure 6.6 Isocontours of constant azimuthal vorticity for M = 2.46 and
Re = 30,000, 6 = 0°.

pulse in the recirculation region. Now, as for the M = 1.2 case and in
contrast to the case with M = 2.46 and Rep = 25,000, the disturbances
grow exponentially in time (starting at Rep = 30, 000), a clear indication of
an absolute instability. Figures 6.6 and 6.7 show instantaneous contour lines
of total vorticity for Rep = 30,000. It is obvious that the large structures
exist; in fact, we found that the intensity (amplitude) of these structures is
on the order of 15% of the free stream velocity. Thus, they are at least of
the same relative strength as for incompressible wakes.

The qualitative effect of the dynamics of the large structures on the time-
averaged base pressure is evident from Figure 6.8. As for the lower Mach

number case (M = 1.2; see above), the base pressure of the time-averaged
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Figure 6.7 Isocontours of constant azimuthal vorticity for M = 2.46 and
Re = 30,000, 8 = 90°

flow field has an almost constant distribution over the radius, which is con-
sistent with experimental results. In this case, the effect of base pressure
reduction due to the time-dependent structures is even larger than for the
lower Mach number case.

For Reynolds number larger than 30,000 the old fourth-order explicit
code required exceedingly costly computations, so all DNS conducted for
Rep > 30,000 employed the new, higher order code. Figure 6.9 shows color-
contours of total vorticity of the plane § = 0° for a full 3-D calculation at
Rep = 100,000. One can clearly see that the simulation employing the new
sixth-order compact difference stencils is able to resolve small scale structures

throughout the domain shown. Also, it is important to note that the flow
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Figure 6.8 Base pressure distribution for a steady axisymmetric flow field
and a time-averaged unsteady flow field for M = 1.2 and Re = 4, 000.

behavior at the points on the axis-line do not appear explicitly in this picture
but rather are like at any other point in the field, an indication that the new
axis-treatment is working very well.

End-view images of instantaneous total vorticity are displayed in figure
6.10 for different downstream locations. Figure 6.10 a) is a slice very close
to the base and shows the small structures in the recirculation zone and no
apparent symmetry is present (except that with respect to # = 0°). At the
locations b) and c¢) which are comparable to locations C and D in Bour-
don & Dutton (1998), turbulent structures that have undergone substantial
growth can be seen. Also, the presence of longitudinal structures in the shear
layer is clearly visible. The position d), which is a cut in the trailing wake

and can be compared to position E in Bourdon & Dutton (1998), shows the
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Figure 6.9 Instantaneous color-contours of total vorticity for 3D-DNS; Rep =
100,000; M = 2.46; 6 = 0°.

formation of a symmetry with respect to @ = 90° as observed in the experi-
ments. This clearly indicates that even though the Reynolds number chosen
for the simulations is an order of magnitude smaller than that in the exper-
iment, qualitative agreement is achieved. Note that all results shown here
are instantaneous views of the unsteady flow field.

Figures 6.11 and 6.12 show instantaneous contour lines of total vorticity
for Rep = 100,000. Again, it is visible that large structures exist and it is
clear that the higher order code resolves more scales than the formerly used
fourth-order explicif code. This is also impressively demonstrated in figures
6.13 and 6.14 where instantaneous contours and colour-contours are shown
for Mach lines and pressure, respectively. The new code is able to capture

the shocklets that occur in the flow, originating from the structures in the
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Figure 6.10 Contours of instantaneous total vorticity for various downstream
locations; Rep = 100,000; M = 2.46.
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Figure 6.11 Isocontours of constant azimuthal vorticity for M = 2.46 and
Re = 100,000, 6 = 0°.
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Figure 6.12 Isocontours of constant azimuthal vorticity for M = 2.46 and
Re = 100,000, § = 90°.

shear layer and travelling downstream. Resolving these pressure-gradients is
necessary for describing the dynamics of the flow correctly.

Another proof of the existence of large structures was also established in
our Direct Numerical Simulations of a two-dimensional base flow for M =
2.46 and Rep = 250,000. Typical results from these investigations are shown
in Figures 6.15 and 6.16. It is obvious that large structures are present, even
when, as in this case (larger Reynolds number), they are resulting from an
absolute instability and did not require continuous forcing. The structures
are most dynamic in the shear layer (see Figures 6.15 and 6.16), where vortex

merging occurs and results in larger, more energetic structures.
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Figure 6.13 Instantaneous contours of Mach lines for 3D-DNS; Rep =
Figure 6.14 Instantaneous color-contours of pressure for 3D-DNS; Rep =

100, 000; M = 2.46; 0 = 0°.

;6 = 42°.
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Figure 6.15 Contours of instantaneous density for DNS of two-dimensional
base flow for M = 2.46 and Re = 250, 000.
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Figure 6.16 Contours of instantaneous spanwise vorticity for DNS of two-
dimensional base flow for M = 2.46 and Re = 250, 000.
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6.2 Large Eddy Simulation

For investigations of higher Reynolds number turbulent flows and as a
benchmark for unsteady RANS and FSM calculations, we also implemented
subgrid-scale turbulence models for Large-Eddy Simulations (LES). In a first
step, we implemented a Smagorinsky-type subgrid-scale turbulence model
into our original DNS code. This turbulence model was suggested for com-
pressible flow by Professor C. Speziale of Boston Universi’py. With this model,
we calculated turbulent wake flows for a range of Reynolds numbers, from
transitional all the way to fully turbulent wakes.

In order to test and validate the LES code, we have performed simulations
for the same Mach number, M = 2.46, as in the experiments carried out at
the University of Illinois (Dutton and co-workers). However, the range of
Reynolds numbers in our simulations was considerably lower, between 30,000
and 400,000 (based on base diameter). Typical results of LES obtained
with the standard fourth-order-accurate code and with the Smagorinsky-
type subgrid-scale model (as proposed for compressible flow by C. Speziale)
are presented in Figures 6.17 - 6.32 for M = 2.46 and Reynolds numbers
Rep = 30,000 and 100,000.

Comparison of corresponding plots for Reynolds numbers 30,000 and

100,000 (Figures 6.17 - 6.32) indicates that there are still quantitative and
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Figure 6.17 Isolines of instantaneous total vorticity from LES with a
Smagorinsky model: M = 2.46 and Re = 30, 000.
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Figure 6.18 Isolines of instantaneous total vorticity from LES with a
Smagorinsky model: M = 2.46 and Re = 100, 000.

qualitative changes of the flow field and the turbulent statistics as the Reynolds
number increases from 30,000 to 100,000. However, when comparing the re-
sults for Reynolds numbers between 100,000 and 400,000 (not shown here),
the changes with Reynolds number are not significant, which may be an indi-
cation that the accuracy of the code together with the Smagorinsky subgrid-
scale model was not sufficient for high-quality simulations that would allow
detailed investigation of the flow physics for high Reynolds numbers. This
was the motivation for developing the considerably more accurate compact
codes and for developing the Flow Simulation Methodology (FSM) (as dis-
cussed in 3.5) so that reliable simulations can be performed for considerably

higher Reynolds numbers.
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Figure 6.19 Isolines for the time-averaged flow field with M = 2.46 and
Re = 30,000 from LES with a Smagorinsky model: pressure.

Figure 6.20 Isolines for the time-averaged flow field with M = 2.46 and
Re = 30,000 from LES with a Smagorinsky model: density.

Figure 6.21 Isolines for the time-averaged flow field with M = 2.46 and
Re = 30,000 from LES with a Smagorinsky model: radial velocity.
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Figure 6.22 Isolines for time-averaged quantities with A = 2.46 and Re =
30,000 from LES: radial turbulence intensity.
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Figure 6.23 Isolines for time-averaged quantities with M = 2.46 and Re =
30,000 from LES: azimuthal turbulence intensity.
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Figure 6.24 Isolines for time-averaged quantities with M = 2.46 and Re =
30,000 from LES: azimuthal component of turbulent Reynolds stress.
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Figure 6.25 Isolines for time-averaged quantities with M = 2.46 and Re =
30,000 from LES: turbulent kinetic energy.
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Figure 6.26 Isolines for the time-averaged flow field with M = 2.46 and
Re = 100,000 from LES with a Smagorinsky model: pressure.

Figure 6.27 Isolines for the time-averaged flow field with M = 2.46 and
Re = 100,000 from LES with a Smagorinsky model: density.

Figure 6.28 Isolines for the time-averaged flow field with M = 2.46 and
Re = 100,000 from LES with a Smagorinsky model: radial velocity.
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Figure 6.29 Isolines for time-averaged quantities with M = 2.46 and Re =
100, 000 from LES: radial turbulence intensity.
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Figure 6.30 Isolines for time-averaged quantities with M = 2.46 and Re =
100, 000 from LES: azimuthal turbulence intensity.
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Figure 6.31 Isolines for time-averaged quantities with M = 2.46 and Re =
100, 000 from LES: azimuthal component of turbulent Reynolds stress.
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Figure 6.32 Isolines for time-averaged quantities with M = 2.46 and Re =
100, 000 from LES: turbulent kinetic energy.




6.3 Reynolds Averaged Navier Stokes

So far, only 2-D simulations have been performed for the supersonic case
by Dutton and co-workers. The initial condition for the supersonic, high
Reynolds number cases was the axisymmetric result for Rep = 100,000 and
M =2.46 obtainea by DNS. In addition, the distribution of K and ¢ was set
to a uniform constant throughout the computational domain. All calculations
were performed on a relatively coarse grid with 250 points in the streamwise
and 120 points in the radial direction.

Figures 6.33-6.36 show the influence of various inflow boundary conditions
for K. When K is kept constant at the inflow (6.33), the turning angie
of the shear layer is larger and the recirculation length shorter than if a
Neumann condition is used (cases 6.34 and 6.35). This can be explained by
the fact that for the ASM model, K and ¢ vanish in the approach boundary
layer if K is not kept at a constant value at the inflow, thus producing a
laminar boundary layer that generates unsteady shedding in the shear layer.
In case 6.36, the standard K — € model produces a more turbulent boundary
layer and, consequently, comes closest to the experiments by Dutton and

co-workers in terms of turning angle and recirculation length.
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Figure 6.33 Color-contours of instantaneous vorticity for 2-D ASM, with
Dirichlet condition for K at inflow; Rep = 3,300,000; M = 2.46.
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Figure 6.34 Color-contours of instantaneous vorticity for 2-D ASM, with
Neumann condition for K at inflow; Rep = 3,300,000; M = 2.46.
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Figure 6.35 Color-contours of averaged vorticity for 2-D ASM, with Neumann
condition for K at inflow ; Rep = 3,300,000; M = 2.46.
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Figure 6.36 Color-contours of instantaneous vorticity for 2-D standard K —e-
model; Rep = 3,300,000; M = 2.46.




6.4 Flow Simulation Methodology

Finally, FSM has been applied to the wake-flow, even though so far only
in 2-D. Figures 6.37 - 6.40 show color contours of instantaneous vorticity
for a test-case at Rep = 100,000 and M = 0.2 for a 2-D ”DNS”, 2-D
"FSM” with differént B and a 2-D URANS?” calculation, all with a resolution
210x120x1. It is obvious that the amount of dissipation becomes larger for
higher contributions of the Reynolds Stresses. In fig.6.37, no turbulence
model is used and because of the simulation being 2-dimensional, there is
a significant amount of energy trapped in the 2-D mode downstream of the
corner.

The strength of that vortex even deforms the shear layer and generates
a massive shear layer break-up close to the base (z =~ 1.5). For the FSM
calculation with 8 = 0.0001 shown in fig. 6.38, the instability in the shear
layer is damped due to the higher amount of dissipation and the vorticies
develop further downstream (z = 2.5).

The contribution function in this case gave values between 5-25%. For the
case of 8 = 0.002 and the URANS calculation shown in figures 6.39 and 6.40,
respectively, the instantaneous flow field looks very similar, largely because
for this value of # and any larger value the contribution of the turbulence

model is very large in the whole domain and therefore the RANS-limit is
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Figure 6.37 Color-contours of instantaneous vorticity for 2-D "DNS”; Rep =
100, 000; M = 0.2.

approached. In these cases the vorticies develop even further downstream
(2 &~ 4.0) and there is no deformation of the shear layer anymore. However,
it is important to note that the simulation still produces these unsteady
structures even with the large amount of turbulent dissipation added (no
forcing is required to obtain these structures; they arise due to the strong

shear layer instability).
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Figure 6.38 Color-contours of instantaneous vorticity for 2-D "FSM” with
B = 0.0001; Rep = 100,000; M = 0.2.

Figure 6.39 Color-contours of instantaneous vorticity for 2-D "FSM” with
B = 0.002; Rep =100,000; M = 0.2.

Figure 6.40 Color-contours of instantaneous vorticity for 2-D URANS;
Rep = 100,000; M = 0.2.




7. CONCLUSIONS

For bluff bodies at supersonic speeds, a significant portion of the drag
is associated with base drag, caused by the low pressure on the base. This
base pressure is greatly influenced by large vortical structures, which, for
axisymmetric bodies, are of helical nature. While the vortex formation pfo—
cess and the nature of the helical structures has been studied in depth for
incompressible flows, both experimentally and numerically, considerably less
is known regarding their information for supersonic flows. Experiments have
confirmed the existence of large structures in supersonic flows, but their be-
havior is poorly understood.

A new, high-order compressible Navier-Stokes code using compact dif-
ference stencils of 6%-order accuracy derived for non-equidistant grids and
a state-of-the-art axis treatment was developed to investigate the stability
behavior in an axisymmetric, bluff body wake at M = 2.46. This Mach
number was chosen to enable comparison with experiments conducted at the
University of Illinois at Urbana Champaign by Dutton and co-workers.

Turbulence models, such as Large Eddy Simulation (LES) and Reynolds
Averaged Navier Stokes (RANS) calculations were also incorporated into the
code. The K — ¢ equations were implemented in fully three-dimensional

form to ensure that RANS simulations can capture azimuthal variations in
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the flow field (e.g., helical structures).

In particular we have also developed and successfully implemented the
new Flow Simulation Methodology (FSM). The centerpiece of FSM is a strat-
egy to provide the proper amount of modeling of the subgrid scales. This is
accomplished by a ” contribution function” which locally and instantaneously
compares the smallest relevant scales to the local grid size. The contribution
function is designed such that it provides no modeling if the computation is
locally well resolved so that the computation approaches a Direct Numerical
Simulation (DNS) in the fine grid limit, or provides modeling of all scales in
the coarse grid limit and thus approaches an unsteady RANS (URANS) cal-
culation. In between these resolution limits, the contribution function adjusts
the necessary modeling for the unresolved scales while the larger (resolved)
scales are computed as in traditional Large Eddy Simulations (LES).

Our calculations have shown that an absolute instability at M = 1.2
exists already for Rep = 4,000, however, for M = 2.46, the onset of the
absolute instability was not observed until Rep > 30,000. Preliminary un-
steady RANS simulations (URANS) for Rep = 3,300,000 at M = 2.46 were
performed and showed coherent structures.

All the results obtained so far have shown that the developed Navier
Stokes code functions properly and that the high-order compact differencing

is of great advantage for supersonic base flow simulations. Furthermore, cal-
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culations with the implemented Flow Simulation Methodology (FSM) have
demonstrated that this approach has great promise for allowing simulations
of supersonic base flows for much larger Reynolds numbers than possible with

conventional Large Eddy Simulations.




LA

Bibliography

ANDERSON, D. A., TANNEHILL, J. C. & PLETCHER, R. H. 1984 Compu-

tational Fluid Mechanics and Heat Transfer. McGraw-Hill.

BourDON, C. J. & DuTTON, J. C. 1998 Planar visualizations of large-scale

turbulent structures in axisymmetric supersonic separated flows. Phys.

Fluids 11, 201-213.

Bourpon, C. J. & DuTTON, J. C. 2000a Effects of boattailing on the
turbulence structure of a compressible base flow. ATAA Paper 2000-2312,

38th aerospace sciences meeting, Reno NV, Jan. 2000.

BourpoN, C. J. & DuTTON, J. C. 20006 Shear layer flapping and interface

convolution in a separated supersonic flow. ATAA J. 38, 1907.

BourbpoN, C. J. & DutTON, J. C. 2001 Visualizations and measurements
of axisymmetric base flows altered by surface disturbances. AJAA Paper

2001-0286, 39th aerospace sciences meeting, Reno NV, Jan. 2001.

BoussINESQ, J. 1877 Théorie de 1'écoulement tourbillant. Mem. Pre. par.

div. Sav. 23.

BowmaN, W. C. & CLAYDEN, W. A. 1968 Boat-tailed afterbodies at M=2

with gas ejection. AIAA J. 2, 2029.

106




o

CANNON, S. & CHAMPAGNE, F. H. 1991 Large-scale structures in wakes

behind axisymmetric bodies. In 8th Symposium on turbulent shear flows.

CHAPMAN, D. R. 1951 An analysis of base pressure at supersonic velocities
and comparison with experiments. NACA Rep. 1051. National Advisory

Committee for Aeronautics.

CHEN, J., MANSOUR, N. & CANTWELL, B. 1990 The effect of Mach num-

ber on the stability of a plane supersonic wake. Phys. Fluids A 2, 984.

CHILDS, R. E. & CARuUsO, S. C. 1987 On the accuracy of turbulent base

flow predictions. ATAA Paper 87-1439.

CLAYDEN, W. A. & BowMAN, W. C. 1968 Cylindrical afterbodies at M=2

with hot gas ejection. ATAA J. 6, 2429.

CORTWRIGHT, E. M. & SCHROEDER, A. H. 1951 Preliminary investigation
of effectiveness of base bleed in reducing drag of blunt-base bodies in su-
personic stream. NACA Rep. RM E51 A26. National Advisory Committee

for Aeronautics.

DANBERG, J. & NIETUBICZ, C. 1992 Predicted flight performance of base

bleed projectiles. Journal of Spacecraft and Rockets 29 (3), 366-372.

DAYMAN, B. 1963 Support interference effect on the supersonic wake. AIAA

J. 8,1921-1923.

107




108

DELERY, J. M. & WAGNER, B. 1990 Results of Garteur action group
AGO09 on flow past missile afterbodies. Symposium on missile aerodynam-

ics, Friedrichshafen, Germany. AGARD/FDP.

DEMETRIADES, A. 1968 Turbulence measurements in an axisymmetric com-

pressible wake. Phys. Fluids 11, 1841-1852.

DinNg, Z., CHEN, S., Liu, Y., Luo, R. & L1, J. 1992 Wind tunnel study of
aerodynamic characteristics of base combustion. J. Propulsion and Power

8, 630.

DONALDSON, I. 1955 The effect of sting supports on the base pressure of a
blunt-based body in a supersonic stream. Aeronautical Quarterly 6, 221-

229.

DurBIN, P. A. 1993 A Reynolds stress model for near wall turbulence. J.

Fluid Mech. 249, 465-498.

DutToN, J. C. & ADDY, A. L. 1993 Fluid dynamic mechanisms and inter-

actions within separated flows. UILU-ENG 93-4019. University of Illinois

at Urbana-Champaign.

FERZIGER, J. H. 1981 Numerical Methods for Engineering Application. John

Wiley & Sons.




W

FORSYTHE, J. R. & HOFFMANN, K. A. 2000 Detached-eddy simulation of
a supersonic axisymmetric base flow with an unstructured solver. AIAA

Paper 00-2410, fluids 2000, Denver CO, June 2000.

ForsyTHE, J. R., HOFFMANN, K. A. & SQUIRES, K. D. 2002 Detached-
eddy simulation with compressibility corrections applied to a supersonic

axisymmetric base flow. ATIAA Paper 02-0586.

GATski, T. B. & SPEZIALE, C. G. 1993 On explicit algebraic stress models

for complex turbulent flows. J. Fluid Mech. 254, 59-78.

HANNEMANN, K. & OERTEL, H. 1989 Numerical simulation of the abso-

lutely and convectively unstable wake. J. Fluid Mech. 199, 55-88.

HARrRIs, P. J. & FAsgrL, H. F. 1996 Numerical investigation of unsteady
plane wakes at supersonic speeds. ATIAA Paper 96-0686, 34th aerospace

sciences meeting and exhibit, Jan 15, 1996 / Reno NV.

HERRIN, J. L. & DuTTON, J. C. 1991 An experimental investigation of the
supersonic axisymmetric base flow behind a cylindrical afterbody. UILU

91-4004. University of Illinois at Urbana-Champaign.

HEeRRIN, J. L. & DutTON, J. C. 1994 Supersonic base flow experiments

in the near wake of a cylindrical afterbody. ATAA J. 32 (1), 77.

109




110

HERRIN, J. L. & DuTtTON, J. C. 1995 Effect of a rapid expansion on the

development of compressible free shear layers. Phys. Fluids 7 (1), 159-170.

HuBBARTT, J. E., STRAHLE, W. C. & NEALE, D. H. 1981 Mach 3 hy-

drogen external/base burning. AJAA J. 19, 745.

HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in

spatially developing flows. Ann. Rev. Fluid Mech. 22, 473-537.

JIMENEZ, J. & MOSER, R. D. 1998 LES: where are we and what can we

expect. AIAA Paper 98—2891.

MARAsLI, B., CHAMPAGNE, F. H. & WYGNANSKI, I. 1989 Modal decom-

position of velocity signals in a plane, turbulent wake. J. Fluid Mech. 198,

255.

MATHUR, T. & DutTON, C. 199640 Base-bleed experiments with a cylin-

drical afterbody in supersonic flow. Journal of Spacecraft and Rockets 33,

30.

MATHUR, T. & DuTtTON, C. 19965 Velocity and turbulence measurements

in a supersonic base flow with mass bleed. ATAA J. 34, 1153.

Meirz, H. & FAseL, H. F. 2000 A compact-difference scheme for the
Navier-Stokes equations in vorticity-velocity formulation. J. Comp. Phys.

157, 371-403. -




g

MORKOVIN, M. V. 1968 Méchanique de la turbulence. In Centre de la

Recherche Scientifique, Paris, p. 367.

NieTuBicz, C. & GIBELING, H. 1993 Navier-Stokes computations for a
reacting, M864 base bleed projectile. AIAA Paper 93-0504, 31st Aero.

sciences meeting and exhibit, Reno / Jan 1993.

OERTEL, H. 1979 Mach wave radiation of hot supersonic jets investigated
by means of the shock tube and new optical techniques. Proc. 12th Int.

Symp. on shock tubes and waves. Jerusalem.

ORTWERTH, P. J. & SHINE, A. J. 1977 On the scaling of plane turbulent

shear layers. Tech. Rep.. AFWL-TR-77-118.

PAaPaAMOSCHOU, D. & ROSHKO, A. 1988 The compressible turbulent shear

layer: An experimental study. J. Fluid Mech. 197, 453-477.

PETRIE, H. L. & WALKER, B. J. 1985 Comparison of experiment and

computations for a missile base region flow field with a centered propulsive

jet. AIAA Paper 85-1618.

REID, J. & HasTiNGs, R. C. 1959 The effect of a central jet on the base
pressure of a cylindrical afterbody in a supersonic stream. Reports and

Memoranda 3224. Aeronautical Research Council, Great Britain.

111




wy

RoLLsTIN, L. 1987 Measurement of inflight base-pressure on an artillery-

fired projectile. AIAA Paper 87—2427.

RosHKO, A. & THOMKE, G. J. 1966 Observations of turbulent reattach-

ment behind an axisymmetric downstream facing step in supersonic flow.

AIAA J. 4, 975.

SAHU, J. 1992 Numerical computations of supersonic base flow with special
emphasis on turbulence modeling. ATAA Paper 92-4352, AIAA Atmo-

spheric Flight Mechanics Conference, Aug 1992, Hilton Head Island, SC.

SAanU, J. & HEeEAVEY, K. R. 1995 Numerical investigation of supersonic

base flow with base bleed. AIAA Paper 95-3459.

SAHU, J. & NIETUBICZ, C. 1994 Three-dimensional flow calculations for a
projectile with standard and dome bases. Journal of Spacecraft and Rockets

31, 103.

SaHu, J., NIETUBICZ, C. & STEGER, J. 1985 Navier-Stokes computations
of projectile base flow with and without mass injection. ATAA J. 23 (9),

1348-1355.

SANDBERG, R. D. 1999 Investigation of turbulence models for boundary
layer flows using temporal numerical simulations. Master’s thesis, The Uni-

versity of Arizona.

112




SARKAR, S. 1992 The pressure-dilatation correlation in compressible flows.

Phys. Fluids A 4 (12), 2674-2682.

SARKAR, S., ERLEBACHER, G., HussaINI, M. Y. & KREiss, H. O. 1991
The analysis and modelling of dilatational terms in compressible turbu-

lence. J. Fluid Mech. 227, 473-493,

SCHWARZ, V., BESTEK, H. & FASEL, H. F. 1994 Numerical simulation of

nonlinear waves in the wake of an axisymmetric bluff body. AIAA-Paper

94-2285.

SIEGEL, S. G. 1999 Experimental investigation of the wake behind an ax-

isymmetric body. PhD thesis, The University of Arizona.

SMAGORINSKY, J. 1963 General circulation experiments with the primitive

equations. I. The basic experiment. Mon. Weather Rev. 91, 99-164.

SMITH, B. L. & DUTTON, J. 1996 Investigation of large-scale structures in

supersonic planar base flows. ATAA J. 34, 1146.

SPALART, P. R., W.-H., J., STRELETS, M. & ALLMARAS, S. R. 1997
Comments on the feasibility of LES for wings, and on a hybrid RANS/LES
approach. In Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES,

Aug 4-8, 1997. Greyden Press, Columbus, OH.

113




SPEZIALE, C. G. 1997 A combined large-eddy simulation and time-
dependent RANS capability for high-speed compressible flows. Tech. Rep.

AM-97-022. Boston University.

SPEZIALE, C. G. 1998 Turbulence modeling for time-dependent RANS and

VLES: A review. ATAA J. 36, 2, 173-184.

SPEZIALE, C. G. & S0, R. M. C. 1996 Turbulence modeling and simula-

tion. Handbook of Fluid Dynamics Ch. 9. Boston University.

STUREK, W. & NIETUBICZ, C. 1992 Recent applications of cfd to the aero-
dynamics of army projectiles at the u.s. army ballistic research laboratory.
AIAA Paper 92-4349, aIAA Atmospheric Flight Mechanics Conference,

Aug 1992, Hilton Head Island, SC.

TeRrzl, D. A. v. & FAsgL, H. F. 2002 A new flow simulation methodology
applied to the turbulent backward-facing step. AIAA Paper 2002—-0429,

40th aerospace sciences meeting and exhibit, Reno / Jan 2002.

TuoMmPsON, K. W. 1987 Time dependent boundary conditions for hyper-

bolic systems. J. Comp. Phys. 68, 1-24.

THUMM, A. 1991 Numerische untersuchungen zum laminar-turbulenten
stromungsumschlag in transsonischen grenzschichtstromungen. PhD the-

sis, Universitat Stuttgart.

114




TOURBIER, D. 1996 Numerical investigation of transitional and turbulent
axisymmetric wakes at supersonic speeds. PhD thesis, The University of

Arizona.

TOURBIER, D. & FASEL, H. F. 1994 Numerical investigation of transitional

axisymmetric wakes at supersonic speeds. AIAA Paper 94-2286.

VALENTINE, D. & PRZIREMBEL, C. 1970 Turbulent axisymmetric near-

wake at Mach four with base injection. AIAA J. 8 (12), 2279-2280.
WHITE, F. M. 1991 Viscous Fluid Flow. McGraw Hill.

WiLcox, D. C. 1998 Turbulence Modeling for CFD, 2nd edn. DCW Indus-

tries.

WYGNANSKI, 1., CHAMPAGNE, F. H. & MARASLI, B. 1986 On large-scale

coherent structures in two-dimensional, turbulent wakes. J. Fluid Mech.

168, 31.

ZHANG, H. L., BAcHMAN, C. R. & FaseL, H. F. 2000 Application of a
new methodology for simulations of complex turbulent flows. ATAA Paper

2000-2535.

115




